首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4070篇
  免费   440篇
  国内免费   348篇
化学   3581篇
晶体学   9篇
力学   125篇
综合类   48篇
数学   760篇
物理学   335篇
  2024年   3篇
  2023年   26篇
  2022年   31篇
  2021年   71篇
  2020年   122篇
  2019年   89篇
  2018年   119篇
  2017年   157篇
  2016年   205篇
  2015年   176篇
  2014年   225篇
  2013年   333篇
  2012年   208篇
  2011年   249篇
  2010年   263篇
  2009年   257篇
  2008年   265篇
  2007年   280篇
  2006年   246篇
  2005年   242篇
  2004年   209篇
  2003年   171篇
  2002年   146篇
  2001年   131篇
  2000年   106篇
  1999年   78篇
  1998年   69篇
  1997年   76篇
  1996年   29篇
  1995年   50篇
  1994年   46篇
  1993年   42篇
  1992年   35篇
  1991年   14篇
  1990年   11篇
  1989年   19篇
  1988年   11篇
  1987年   10篇
  1986年   7篇
  1985年   7篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有4858条查询结果,搜索用时 468 毫秒
1.
The microscopic Polymer Reference Interaction Site Model theory is employed to study, for the first time, the effective interactions, spatial organization, and miscibility of dilute spherical nanoparticles in non‐microphase separating, chemically heterogeneous, compositionally symmetric AB multiblock copolymer melts of varying monomer sequence or architecture. The dependence of nanoparticle wettability on copolymer sequence and chemistry results in interparticle potentials‐of‐mean force that are qualitatively different from homopolymers. An important prediction is the ability to improve nanoparticle dispersion via judicious choice of block length and monomer adsorption‐strengths which control both local surface segregation and chain connectivity induced packing constraints and frustration. The degree of dispersion also depends strongly on nanoparticle diameter relative to the block contour length. Small particles in copolymers with longer block lengths experience a more homopolymer‐like environment which renders them relatively insensitive to copolymer chemical heterogeneity and hinders dispersion. Larger particles (sufficiently larger than the monomer diameter) in copolymers of relatively short block lengths provide better dispersion than either a homopolymer or random copolymer. The theory also predicts a novel widening of the miscibility window for large particles upon increasing the overall molecular weight of copolymers composed of relatively long blocks. The influence of a positive chi‐parameter in the pure copolymer melt is briefly studied. Quantitative application to fullerenes in specific copolymers of experimental interest is performed, and miscibility predictions are made. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1098–1111  相似文献   
2.
Star copolymers have attracted significant interest due to their different characteristics compared with diblock copolymers, including higher critical micelle concentration, lower viscosity, unique spatial shape, or morphologies. Development of synthetic skills such as anionic polymerization and controlled radical polymerization have made it possible to make diverse architectures of polymers. Depending on the molecular architecture of the copolymer, numerous morphologies are possible, for instance, Archimedean tiling patterns and cylindrical microdomains at symmetric volume fraction for miktoarm star copolymers as well as asymmetric lamellar microdomains for star‐shaped copolymers, which have not been reported for linear block copolymers. In this review, we focus on morphologies and microphase separations of miktoarm (AmBn and ABC miktoarm) star copolymers and star‐shaped [(A‐b‐B)n] copolymers with nonlinear architecture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1–21  相似文献   
3.
The ability of bottlebrush block copolymers (BBCPs) to self-assemble into ordered large periodic structures could greatly expand the scope of photonic and membrane technologies. In this paper, we describe a two-step synthesis of poly(l-lactide)-b-polystyrene (PLLA-b-PS) BBCPs and their rapid thin-film self-assembly. PLLA chains were grown from exo-5-norbornene-2-methanol via ring-opening polymerization (ROP) of l-lactide to produce norbornene-terminated PLLA. Norbonene-terminated PS was prepared using anionic polymerization followed by a termination reaction with exo-5-norbornene-2-carbonyl chloride. PLLA-b-PS BBCPs were prepared from these two norbornenyl macromonomers by a one-pot sequential ring opening metathesis polymerization (ROMP). PLLA-b-PS BBCPs thin-films exhibited cylindrical and lamellar morphologies depending on the relative block volume fractions, with domain sizes of 46–58 nm and periodicities of 70–102 nm. Additionally, nanoporous templates were produced by the selective etching of PLLA blocks from ordered structures. The findings described in this work provide further insight into the controlled synthesis of BBCPs leading to various possible morphologies for applications requiring large periodicities. Moreover, the rapid thin film patterning strategy demonstrated (>5 min) highlights the advantages of using PLLA-b-PS BBCP materials beyond their linear BCP analogues in terms of both dimensions achievable and reduced processing time.  相似文献   
4.
Partially fluorinated poly(arylene ether sulfone) multiblock copolymers bearing perfluorosulfonic functions (ps‐PES‐FPES), with ionic exchange capacity (IEC) ranging between 0.9 and 1.5 meq H+/g, are synthesized by regioselective bromination of partially fluorinated poly(arylene ether sulfone) multiblock copolymers (PES‐FPES), followed by Ullman coupling reaction with lithium 1,1,2,2‐tetrafluoro‐2‐(1,1,2,2‐tetrafluoro‐2‐iodoethoxy)ethanesulfonate. The PES‐FPES are prepared by aromatic nucleophilic substitution reaction by an original approach, that is, “one pot two reactions synthesis.” The chemical structures of polymers are analyzed by 1H and 19F NMR spectroscopy. The resulted ionomers present two distinct glass transitions and α relaxations revealing phase separation between the hydrophilic and the hydrophobic domains. The phase separation is observed at much lower block lengths of ps‐PES‐FPES as compared with the literature. AFM and SANS observations supported the phase separation, the hydrophilic domains are well dispersed but the connectivity to each other depends on the ps‐PES block lengths. The thermomechanical behavior, the water up‐take, and the conductivity of the ps‐PES‐FPES membranes are compared with those of Nafion 117® and randomly functionalized polysulfone (ps‐PES). Conductivities close or higher to those of Nafion 117® are obtained. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1941–1956  相似文献   
5.
The random copolymerization of norbornene-functionalized macromonomers was explored as a method of synthesizing mixed-graft block copolymers (mGBCPs). The copolymerization kinetics of a model system of polystyrene (PS) and poly(lactic acid) (PLA) macromonomers was first analyzed, revealing a gradient composition of side chains along the mGBCP backbone. The phase separation behavior of mGBCPs with PS and PLA side chains of various backbone lengths and side chain molar ratios was investigated, and increasing the backbone length was found to stabilize the phase-separated nanostructures. The graft architecture was also demonstrated to improve the processability of the mGBCP, compared to a linear counterpart. Investigations of mGBCPs comprised of polydimethylsiloxane and poly(ethylene oxide) side chains exemplified the diverse self-assembled morphologies, including a Frank-Kasper A15 phase, that can be obtained with mGBCPs synthesized by random copolymerization of macromonomers. Lastly, a ternary mGBCP was synthesized by the copolymerization of three macromonomers.  相似文献   
6.
Here, we demonstrate the applicability of self-assembling linear-dendritic block copolymers (LDBCs) and their nanoaggregates possessing varied surfaces as therapeutic nanocarriers. These LDBCs are comprised of a hydrophobic, linear polyester chemically coupled to a hydrophilic dendron polyamidoamine (PAMAM)—the latter of which acts as the surface of the self-assembled nanoaggregate in aqueous media. To better understand how surface charge density affects the overall operability of these nanomaterials, we modified the nanoaggregate surface to yield cationic (NH3+), neutral (OH), and anionic (COO) surfaces. The effect of these modifications on the physicochemical properties (i.e., size, morphology, and surface charge density), colloidal stability, and cellular uptake mechanism of the polymeric nanocarrier were investigated. This comparative study demonstrates the viability of nanoaggregates formed from PDLLA-PAMAM LDBCs to serve as nanocarriers for applications in drug delivery.  相似文献   
7.
The present paper is a continuation of comprehensive study regarding to synthesis and properties of pyrazoles and their derivatives. In its framework an experimental and theoretical studies of thermal decomposition of the 3,3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline were performed. It was found, that the decompositions of the mentioned pyrazoline system in the solution and at the melted state proceed via completely different molecular mechanisms. These mechanisms have been explained in the framework of the Molecular Electron Density Theory (MEDT) with the computational level of B3LYP/6-31G(d). A Bonding Evolution Theory (BET) examination of dehydrochlorination of the 3,3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline permits elucidation of the molecular mechanism. It was found, that on the contrary for most known HCl extrusion processes in solution, this reaction is realised via single-step mechanism.  相似文献   
8.
Mixed-graft block copolymers (mGBCPs) consist of two or more types of polymeric side chains grafted on a linear backbone in a random, alternating, or pseudo-alternating sequence. They can phase-separate with the backbone serving as the interface of the blocks, and the side chains dominate their self-assembly behavior. mGBCPs are an accessible polymer architecture for exploring the idea of encoding polymer properties through the macromolecular architecture, as there are two distinct structural components that can be tuned: the backbone and the side chains. In this Concept article, the current literature on the synthesis of mGBCPs is reviewed, and the advantages and disadvantages of each synthetic method are noted. The self-assembly of mGBCPs is also discussed where possible. Finally, directions for future research on mGBCP synthesis and self-assembly are suggested.  相似文献   
9.
Adding perfluoroalkyl (PF) segments to amphiphilic copolymers yields triphilic copolymers with new application profiles. Usually, PF segments are attached as terminal blocks via Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC). The purpose of the current study is to design new triphilic architectures with a PF segment in central position. The PF segment bearing bifunctional atom transfer radical polymerization (ATRP) initiator is employed for the fabrication of triphilic poly(propylene oxide)-b-poly(glycerol monomethacrylate)-b-PF-b-poly(glycerol monomethacrylate)-b-poly(propylene oxide) PPO-b-PGMA-b-PF-b-PGMA-b-PPO pentablock copolymers by a combined ATRP and CuAAC reaction approach. Differential scanning calorimetry indicates the PF-initiator to undergo a solid–solid phase transition at 63°C before the final crystal melting at 95°C. This is further corroborated by polarized optical microscopy and X-ray diffraction studies. The PF-initiator could successfully polymerize solketal methacrylate (SMA) under typical ATRP conditions producing well-defined Br-PSMA-b-PF-b-PSMA-Br triblock copolymers that are then converted into PPO-b-PSMA-b-PF-b-PSMA-b-PPO pentablock copolymer via CuAAC reaction. Subsequently, acid hydrolysis of the PSMA blocks afforded water soluble well-defined triphilic pentablock copolymers PPO-b-PGMA-b-PF-b-PGMA-b-PPO with fluorophilic central segment, hydrophilic middle blocks, and lipophilic outer blocks. The triphilic block copolymers could self-assemble, depending upon the preparatory protocol, into spherical and filament-like phase-separated nanostructures as revealed by transmission electron microscopy.  相似文献   
10.
Functional, degradable polymers were synthesized via the copolymerization of vinyl acetate (VAc) and 2‐methylene‐1,3‐dioxepane (MDO) using a macro‐xanthate CTA, poly(N‐vinylpyrrolidone), resulting in the formation of amphiphilic block copolymers of poly(NVP)‐b‐poly(MDO‐co‐VAc). The behavior of the block copolymers in water was investigated and resulted in the formation of self‐assembled nanoparticles containing a hydrophobic core and a hydrophilic corona. The size of the resultant nanoparticles was able to be tuned with variation of the hydrophilic and hydrophobic segments of the core and corona by changing the incorporation of the macro‐CTA as well as the monomer composition in the copolymers, as observed by Dynamic Light Scattering, Static Light Scattering, and Transmission Electron Microscopy analyses. The concept was further applied to a VAc derivative monomer, vinyl bromobutanoate, to incorporate further functionalities such as fluorescent dithiomaleimide groups throughout the polymer backbone using azidation and “click” chemistry as postpolymerization tools to create fluorescently labeled nanoparticles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2699–2710  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号